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Abstract: - Local features extracted from images have broad potential in varieties of computer vision 
applications, such as image retrieval, object recognition and scene recognition. However, many of the existing 
features are not robust enough due to the existence of illumination changes, which is a common occurrence in 
real world applications, e.g. shadowing. In this paper, a novel feature descriptor is proposed to designing more 
robust to illumination changes. The basic principle of the proposed method is based on the observation that 
although the intensity values may be changed due to illumination changes, the texture structure or pixel class in 
the corresponding locations still remains unchanged. Specifically, they are achieved by applying Histogram 
Equalization and Intensity Normalization in pre-process step, and considering overall intensity distribution 
properties together with local intensity difference information by introducing fuzzy reasoning rules. In order to 
make our descriptor more discriminative and robust, we also propose a novel gradient-based weighting scheme. 
Experimental results on the popular Oxford dataset have shown that our proposed descriptor outperforms many 
state-of-the art methods not only under complex illumination changes, but also under many other image 
transformations. 
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1 Introduction 
Local features extracted from images have been 
gained tremendous importance and popularity in 
recent years due to their good performance in a 
variety of computer vision tasks, such as image 
retrieval [1], object recognition [2], texture 
recognition [3], wide baseline matching [4], and 
panoramic image stitching [5]. A general process 
usually involves the following three stages: First is 
detecting the interest points or interest regions that 
are invariant to a class of transformations, Harris 
corner [6], DoG (Difference of Gaussian) [2], 
Harris-affine/Hessian-affine [7], MSER(Maximally 
Stable Extremal Region) [8] and EBR (Edge-Based 
Region) [4] are efficient and widely used methods. 
Then invariant feature descriptors for each interest 
points or regions are built, e.g. SIFT (Scale 
Invariant Feature Transform) [2] and GLOH 
(Gradient Location-Orientation Histogram) [9]. 
Once the descriptors computed, we can match 

interest regions between images under some 
similarity measure, e.g. the Euclidean distance. In 
this paper, we mainly focus on designing image 
descriptors for local interest regions. 

A good local feature descriptor should be 
distinctive while simultaneously robust to as many 
image transformations as possible, such as 
illumination changes, perspective distortions, image 
rotation, image blur, image zoom, JEPG 
compression, and so on. Among them, illumination 
changes are a common occurrence in real world 
applications and may cause problems and challenges 
in many vision applications such as feature 
matching [4]. In this paper, we focus on designing 
descriptor mainly for illumination changes. The 
basic idea of the proposed method is based on the 
observation that although the intensity values may 
be changed due to illumination changes, the texture 
structure or pixel class in the corresponding 
locations still remains unchanged. By introducing 
fuzzy reasoning rules, image pixels are first divided 
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into six classes which are a background class, four 
edge classes and a speckle edge class (a speckle is a 
noisy pixel). Then Local Pixel Class Pattern (LPCP) 
is proposed to encode the pixel class information in 
each patch. In order to make it more distinctive, we 
also combine it with another descriptor which we 
call Weighted Histogram of Intensities (W-HOI). 
The two proposed methods capture complementary 
properties of a feature region - one captures local 
intensity difference properties and the other captures 
the overall distribution of pixels in the patch. Both 
of these methods are designed to be more robust to 
illumination changes and found to improve upon 
either of the two considered separately. 

The rest of this paper is organized as follows: 
Section 2 gives a brief overview of the related 
works. Then, our new descriptor is presented in 
Section 3. The dataset and evaluation metrics are 
described in Section 4. And the experimental results 
are carried out in in Section 5. Finally, conclusions 
are drawn in Section 6. 
 
 
2 Related Work 
Recently, many methods have been proposed to 
handle illumination changes. Gradient-based image 
descriptors are one class of them. And SIFT perhaps 
is one of the most famous and popular descriptor 
among them. Inspired by the high discriminative 
ability and robustness of SIFT, many variant 
approaches are proposed. GLOH replaces the 
Cartesian location grid used by the SIFT with a log-
polar one, and DAISY [10] creates a histogram of 
gradient orientations. These descriptors usually 
outperform other local descriptors such as shape 
context [12], steerable filters [13], spin images [3] 
and derivative-based descriptors [14]. In order to be 
more compact and distinctive than SIFT, Ke and 
Sukthankar [11] proposed the PCA-SIFT descriptor 
through applying PCA (Principal Component 
Analysis) to gradient patch of keypoint. The SURF 
descriptor [15] builds on the strengths of the leading 
existing detectors and descriptors and significantly 
reduces computation time by relying on integral 
images for image convolutions. 

Although the above descriptors have been 
shown to be partially or fully robust to many of the 
variations, the performance significantly degrade 
when complex illumination change happens. To 
alleviate this problem, intensity order based 
methods are proposed. The Local Binary Pattern 
(LBP) descriptor proposed by Ojala [16] is a simple 
yet efficient operator to describe local image pattern, 
and has been highly successful for various computer 
vision problems such as scene recognition [17, 18], 

face recognition [19]. However, LBP operator 
produces a rather higher dimensional histogram and 
is not too robust on flat image areas. Only 
comparing center-symmetric pairs of pixels, CS-
LBP [20] descriptor was proposed by combining the 
strength of the SIFT descriptor. In [21], Gupta et al. 
extended the CS-LBP descriptor to a ternary coding 
style which called CS-LTP and combined with a 
histogram of relative intensities to build a robust 
feature descriptor called HRI-CSLTP. Tang et al. 
[22] proposed a novel descriptor called Ordinal 
Spatial Intensity Distribution (OSID) which uses a 
2D histogram of position and intensity order to deal 
with monotonically increasing illumination changes. 
Using intensity order to encode the local ordinal 
information and divide subregions, a Local Intensity 
Order Pattern (LIOP) [23] descriptor was proposed. 
It is not only invariant to monotonic intensity 
changes but also robust to image rotation. These 
methods usually obtained good performance in 
handling illumination changes due to the 
observation that although the intensity values may 
be changed, the relative ordering of the intensity 
values in the corresponding locations still remains 
unchanged. 

However, the intensity order may be noisy in 
the presence of Gaussian noise, especially when the 
nearby pixels are close in intensity just as mentioned 
in [21]. In [24], Liang and Looney proposed a 
competitive fuzzy edge detection (CFED) method. 
This method divides edge types into six patterns and 
uses fuzzy reasoning rules to determine which 
pattern the edge type belongs to. It is shown to be 
robust to Gaussian noise. Similar with CFED, Kang 
[25] proposed a directional median filter by using 
fuzzy reasoning rules. Inspired by these methods, 
we introduce fuzzy reasoning rules into feature 
descriptor and propose a novel descriptor called W-
HOI-LPCP which is fundamentally different from 
the previous ones. The basic idea of our method is 
based on the observation that no matter how the 
illumination changes the pixel class remains 
unchanged or stable. We also found that the regions 
with more texture information usually give more 
contributions to the descriptor. Based on this 
observation, we also propose a new gradient-based 
weighting scheme. The experiments show improved 
performance over standard datasets. 
 
 
3 Our Method 
Our descriptor is composed of two parts. Firstly, 
Histogram Equalization and Normalization are 
applied in the pre-processing step. Then these 
normalized intensities are used to build a histogram 
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based descriptor in subregions for each patch. Next, 
fuzzy reasoning rules are introduced to create the 
LPCP descriptor. Finally, the two distinctive 
descriptors are concatenated together. The workflow 
of our method is shown in Fig 1. Detailed discussion 
will be presented in the following subsections. 
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Fig.1 The workflow of our method. 

 
 
3.1 Pre-processing and Region Detection 
Some of the existing methods employ Gaussian 
filter [23] or Normalization [21] before feature 
region detection. However, this operation maybe 
lead to some detailed information missing. Thus, 
some important interest points or regions may be 
undetected accordingly. In our method, the original 
images are used to locate interest regions, and 
images after Gaussian filter and normalization are 
used to compute descriptors. The existing feature 
detectors such as Harris-Affine or Hessian-Affine 
can be used for interest region detection. 

For these images to compute descriptors, we 
first apply Histogram Equalization to attenuate the 
differences that appear under illumination variations. 
Then a Gaussian filter with sigma σp is used to 
remove noise. After that, the range of intensities is 
determined which is used to normalize the 
intensities. In order to make it more robust to noise, 
the intensities below (Lm+ε) and above (Hm-ε) are 
set to (Lm+ε) and (Hm-ε) respectively because these 
values can be noisy, where Lm and Hm are the 
lowest and highest intensity value of image 
(typically ε is around 5), and then all the intensities 
are normalized to 0~1. 

The detected regions need to be normalized to 
circular regions of a fixed diameter because the 
detected regions usually have varying sizes and 
shapes. The typical choice of the diameter is 41 but 

it may vary with the image resolution and scale. In 
order to achieve rotation invariance, the normalized 
regions also need to be rotated to the local 
consistent orientation (e.g. the dominant gradient 
orientation suggested by Lowe [2]). Finally, the 
local patch is smoothed by a Gaussian filter with 
sigma σn to remove the noise introduced by 
interpolation in the normalization step. 
 
 
3.2 Weighted Histogram of Intensities 
At first, local patch is divided into S spatial bins in a 
manner similar to SIFT descriptor. This is shown 
diagrammatically in Fig 2. And then we create a 
histogram for each spatial bin. The histogram 
consists of k bins where the ith bin stores the number 
of pixels have the same intensity values. Here, 
bilinear interpolation is needed to distribute the 
weight of each pixel into adjacent histogram bins 
just like SIFT does. Since the texture regions 
usually give more contributions to the descriptor 
than these flat regions. Furthermore, the texture 
regions usually have large gradient magnitudes. So 
these regions which have large gradient magnitudes 
should be given larger weights. Thus, a new 
weighting function for each spatial bin is proposed 
to improve the robustness of our descriptor, which is 
defined as follows: 
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Fig.2 Region division. 
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where GS (xi, j) is the gradient magnitude of xi, j in 
the sth spatial bin. Here, Sobel operator is used to 
compute gradient magnitudes. Experiments show 
that this weighting scheme performs better than the 
uniform weighting scheme and Gaussian weighting 
scheme (see Fig 8). 

Thus, we have a descriptor of S×K bins which 
we call it W-HOI (Weighted Histogram of 
Intensities). It is noted that our region division 
method is different from SIFT which is equally 
divided into 4×4 bins. Here, our subregions are 
composed of eight non-overlapping regions and four 
partly-overlapping regions. Experiments show that 
this region division method reduces descriptor 
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dimension while simultaneously keeps the 
distinctive power (see Fig 9 (a)). 
 
 
3.3 Local Pixel Class Pattern Descriptor 
The above mentioned approach works on the overall 
distribution of the pixels in the patch but does not 
capture local intensity difference information. More 
recently, this information has been used for feature 
descriptors which achieve high performance 
comparable to SIFT, such as CS-LBP [20], CS-LTP 
[21]. They create a histogram of central symmetric 
local binary or ternary pattern. In this paper, local 
intensity difference information is used in a novel 
way by introducing fuzzy reasoning rules. 

Before the formal definition of our fuzzy 
reasoning rules, the local intensity differences 
defined in [24] are introduced. Fig 3 shows eight 
local neighborhoods of pixels with a radius of R to 
the center pixel. The four directional intensity 
differences of the point x are calculated by 
 ( ) ( )1 1 2 Direction1d x x x x x= − + −      (2-1) 

 ( ) ( )2 3 4 Direction 2d x x x x x= − + −      (2-2) 

 ( ) ( )3 5 6 Direction 3d x x x x x= − + −      (2-3) 

 ( ) ( )4 7 8 Direction 4d x x x x x= − + −      (2-4) 
x3

x5

x7

x2

x1

x8

x6

x4

x
R

 
Fig.3 Eight local neighborhoods of pixels with a 

radius of R to the center pixel x. 
 

An image can be segmented into two regions: 
flat region and texture region. Texture region can be 
further divided into n (n=4 in this paper) edge 
classes according to their directions. Based on this 
observation we can define six fuzzy rules to 
determine which class of the current pixel belongs 
to. The six possible classes of the current pixel are a 
background class, four edge classes and a speckle 
edge class. Four typical neighborhood situations 
with a radius of R=1 are shown in Fig 4. 
 

 
Fig.4 Four typical edge classes. 

The six rules are: 
Rule-1: If d1 is Small, d2 is Small, d3 is Small and d4 

is Small, then xi, j is possibly a background 
pixel. 

Rule-2: If d1 is Small, d2 is Big, d3 is Big and d4 is 
Big, then xi, j is possibly an edge pixel of 
direction 1. 

Rule-3: If d1 is Big, d2 is Small, d3 is Big and d4 is 
Big, then xi, j is possibly an edge pixel of 
direction 2. 

Rule-4: If d1 is Big, d2 is Big, d3 is Small and d4 is 
Big, then xi, j is possibly an edge pixel of 
direction 3. 

Rule-5: If d1 is Big, d2 is Big, d3 is Big and d4 is 
Small, then xi, j is possibly an edge pixel of 
direction 4. 

Rule-6: If d1 is Big, d2 is Big, d3 is Big and d4 is Big, 
then xi, j is possibly a speckle edge pixel. 

 
Small and Big are fuzzy membership functions 

shown in Eq 3 and Eq 4, respectively. Both of them 
are trapezoid shapes and illustrated in Fig 5. 
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Fig.5 The fuzzy membership functions Small (u) 

and Big (u). 
 

The selection of the two parameters will be 
discussed in Section 4. The original fuzzy rule base 
has 16 rules due to four inputs, d1-d4, and two fuzzy 
membership functions. To simplify the fuzzy rule 
base and reduce computational cost, only six rules 
are considered. Experiment results show this six 
pixel classes can capture most of the texture 
information in the image. Then let fuzzy truth value 
F be defined below: 

( ) ( ) ( ) ( )1 1 2 3 4Small Small Small SmallF d d d d= ⋅ ⋅ ⋅  
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 ( ) ( ) ( ) ( )2 1 2 3 4Small Big Big BigF d d d d= ⋅ ⋅ ⋅  

 ( ) ( ) ( ) ( )3 1 2 3 4Big Small Big BigF d d d d= ⋅ ⋅ ⋅  

( ) ( ) ( ) ( )4 1 2 3 4Big Big Small BigF d d d d= ⋅ ⋅ ⋅  

( ) ( ) ( ) ( )5 1 2 3 4Big Big Big SmallF d d d d= ⋅ ⋅ ⋅  

( ) ( ) ( ) ( )6 1 2 3 4Big Big Big BigF d d d d= ⋅ ⋅ ⋅  
 

Here, we use product inference engine [26] to 
realize the fuzzy reasoning. After all fuzzy truth 
values are obtained, the largest fuzzy truth is used to 
determine the class membership. Thus the LPCP 
value is defined by 

{ }
{ }

1 2 3 4 5 6 1

Case-1: Background Class
If  max , , , , ,

1,0,0,0,0,0

F F F F F F F

LPCP

=

=

 

{ }
{ }

1 2 3 4 5 6 2

Case-2: Edge Class of Direction 1
If  max , , , , ,

0,1,0,0,0,0

F F F F F F F

LPCP

=

=

 

{ }
{ }

1 2 3 4 5 6 3

Case-3: Edge Class of Direction 2
If  max , , , , ,

0,0,1,0,0,0

F F F F F F F

LPCP

=

=

 

{ }
{ }

1 2 3 4 5 6 4

Case-4: Edge Class of Direction 3
If  max , , , , ,

0,0,0,1,0,0

F F F F F F F

LPCP

=

=

 

{ }
{ }

1 2 3 4 5 6 5

Case-5: Edge Class of Direction 4
If  max , , , , ,

0,0,0,0,1,0

F F F F F F F

LPCP

=

=

 

{ }
{ }

1 2 3 4 5 6 6

Case-6: Speckle Edge Class
If  max , , , , ,

0,0,0,0,0,1

F F F F F F F

LPCP

=

=

 

Finally, the descriptor is constructed by 
accumulating LPCPs of points in each spatial bin 
respectively, then by concatenating them together. 
Mathematically, the LPCP descriptor of the local 
patch is calculated as: 

{ }1 1 2 2descriptor , , ,

s

S S

s x
x Bin

LPCP w Des w Des w Des

Des LPCP
∈

 = ⋅ ⋅ ⋅

                         = ∑


 

where S is the number of the spatial bins, and the 
dimension of the descriptor is 6×S. Here, we also 
use the weighting function ws described in Section 
3.2 to improve the robustness of the LPCP 
descriptor. 

The two descriptor designed by us are 
concatenated for improved results due to their 
complementary information. While one captures the 
overall distribution of pixels and the other captures 
local intensity difference properties in the patch. We 
call this concatenated descriptor W-HOI-LPCP. 
 
 
4 Dataset and Evaluation Criterion 
4.1 Dataset 
To evaluate the performance of the proposed 
descriptor, we have tested it on the Oxford dataset 
which is widely used for local feature descriptors 
evaluation by most of researchers. This dataset can 
be downloaded from Oxford university website 
[27]. It contains real images with different 
photometric and geometric transformations of 
structured and textured scenes. The following 
different transformations are evaluated: illumination 
change, viewpoint change, scale change, image 
rotation, image blur, and JPEG compression. Fig 7 
shows example images of our data set used for the 
evaluation. In order to get more detail about the 
performance of the proposed descriptor to complex 
illumination changes, we also test it on some 
synthesized images. We perform a square and 
square root operation on the 6th Leuven image which 
has the largest illumination changes in the Leuven 
dataset as [22] does. Such nonlinear transformations 
make images very challenging due to complex 
illumination changes. Fig 6 shows these two 
synthesized images. 
 

 
Fig.6 Synthesized images from 6th of Leuven 

dataset: (a) squared illumination change; (b) square 
root illumination change. 

 
4.2 Detector 
Since Hesaff region detector provides more interest 
regions than others, we use it for all descriptors in 
our comparison. The Hesaff detects blob-like 
structures and outputs elliptic regions of varying 
size. To make fair comparisons of the descriptors, 
we normalize these elliptic regions to a circular 
regions of a fixed diameter (diameter is set to 41) as 
described in Section 3.1. And then they are used to 
compute descriptors. 
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Fig.7 Examples of images used for the evaluation. 
 
 

 

      

Bark: zoom + rotation 

      

Bikes: image blur 

      

Boat: zoom + rotation 

      

Graf: viewpoint change 

      

Leuven: illumination change 

      

UBC: JPEG compression 

      

Wall: viewpoint change 
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4.3 Evaluation Criterion 
We used the same evaluation criterion proposed by 
Mikolajczyk and Schmid [9] which is based on the 
number of correct and false matches between a pair 
of images. And we adopt the nearest neighbor 
distance ratio (NNDR) as the matching strategy, 
which defines a match if the distance ratio between 
the first and second nearest neighbors is below a 
threshold. The number of correct matches is 
determined with the “overlap error” [7]. A match is 
assumed to be correct if the overlap area is > 0.5. 
We use this criterion for all results in our 
experiments. The results are presented with recall 
versus 1-precision where recall and 1-precision are 
defined as below 

#correct matchesrecall
#correspondences

=  

# false matches1 precision
#correct matches #false matches

− =
+

 

where #correspondences is the ground truth number 
of matches. 
 
 
5 Experiments 
5.1 Parameter Selection 
There are seven parameters in our method: the 
smoothing sigma σp and σn in the pre-process step, 
the sampling radius R, the number of spatial bins S, 
the number of intensity histogram bins K, and the 
two parameters a and b in fuzzy membership 
functions. In order to study the effect of the 
parameters on the performance of our descriptor, we 
performed various simulations. 

Many literatures have verified that the 
performance is significantly improved with 
smoothing prior to the descriptor computation. And 
best performances are obtained when setting σp and 
σn to 1, 1.2 respectively in our experiments. We 
compared the matching performance of the 
proposed descriptor by simply trying all 
combinations of these parameters in three image 
sequences of the Oxford dataset: Boat, Graf and 
Wall. Due to the space limit, only the performance 
of one image pairs is shown. Fig 9 (a) shows the 
results between the 1st and the 2nd images in Boat by 
varying S (12 and 16) and K (8, 10 and 16). As can 
be observed, the best performance obtained when 
S=12 and K=8. This selection also obtains smallest 
dimension and least computational cost. Thus, the 
dimension of our descriptor is 12×(8+6) =168. The 
performance evaluations varying a (0, 5 and 10) and 
b (20, 30 and 50) between the 1st and the 4th images 
in Wall are shown in Fig 9 (b). It is clear that both 

the settings of {a=0, b=30} and {a=10, b=30} give 
good performance. Here, we select {a=10, b=30}. It 
is noted that all the selected parameters are 
unchanged in all our subsequent experiments and 
they are shown in Table 1.  
 

Table.1 The selected parameters. 
Parameters σp σn R S K a b 
Values 1.0 1.2 3 12 8 10 30 
 

We also compared our weighting function to 
uniform weighting, Gaussian weighting, and 
without weighting. The performance evaluation 
results are shown in Fig 8, which we can observe 
that the proposed weighting function gets the best 
performance. 
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Fig.8 Performance comparison among Gaussian 

weighting, without weighting, uniform weighting 
and the proposed weighting (Eq 1). 

 
 
5.2 Performance Evaluation 
We have compared the proposed W-HOI-LPCP 
descriptor against the following existing features: 
SIFT [2], DAISY [11], HRI-CSLTP [21] and LIOP 
[23]. The binaries and Matlab codes for extracting 
the Hessian affine regions and computing the above 
descriptors are downloaded from the website [27, 
28]. Note that all the subsequent tests are simulated 
in Matlab 7.10.0 and based on the same hardware 
devices (Duo CPU 2.26GHz, Memory is 4G). Due 
to the space limit, only the performance of two 
image pairs is shown. 

Illumination changes: We first tested our 
descriptor under illumination changes in the 
“Leuven” dataset. Experiments are run between the 
first image in this dataset and the remaining five 
images with increasing amount of illumination 
change. The results are shown in Fig 9 (c)-(d). We 
selected the 2nd and 6th image for showing since the 
2nd image has the least illumination change 
compared to the 1st while the 6th has the largest 
illumination change. From Fig 9 (c)-(d) we can see 
that our descriptor performs consistently better than  
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Fig.9 Experimental results: (a)-(b) performance comparison of the W-HOI-LPCP descriptor under different 

parameter configurations and weighting scheme. Experimental results for (i) illumination changes (c)-(f), (ii) 
JPEG compression (g)-(h), (iii) other transformations: image blur (i)-(j), image rotation and scale change (k)-(l), 
viewpoint change (m)-(p). Note that scales are different for different figures to improve the clarity of the plot. 

 
 

all the other tested descriptors especially when 
having large illumination changes. We also evaluate 
the performance on the synthesized images shown 
in Fig 6. Our descriptor also outperforms all other 
tested descriptors by a wide margin especially in the 
case with squared illumination change. 

JPEG compression: Then our descriptor is 
tested under JPEG compression using the “UBC” 
dataset. We also selected the 2nd and 6th two image 
pairs and the results are shown in Fig 9 (g)-(h). As 

can be observed, our descriptor performs best even 
in the presence of significant JPEG compression in 
Fig 9 (g)-(h). 

Other transformations: Finally, we test our 
descriptor for other transformations: image blur, 
image rotation and scale change, and viewpoint 
change. The results are shown in Fig 9 (i)-(p). For 
image blur change, it outperforms other descriptors 
except LIOP. For image rotation and scale change, it 
gets almost the same performance as the other 
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descriptors. For viewpoint change, our descriptor 
and LIOP descriptor obtain the best performance 
except for Wall 1-4. As can be observed, the 
proposed W-HOI- LPCP descriptor obtains a high 
discriminative and robust power not only under 
complex illumination change, but also under many 
other image transformations. 
 
 
6 Conclusions 
We have presented a novel feature descriptor which 
is combined by two different methods: Weighted 
Histogram of Intensities (W-HOI) and Local Pixel 
Class Pattern (LPCP). Both of them are designed to 
be more robust to complex illumination changes 
than the previous proposed intensity order based 
methods. Specifically, they are achieved by 
applying Histogram Equalization and Intensity 
Normalization in pre-processing step to attenuate 
the differences that appear under illumination 
variations before descriptors computing. Meanwhile 
local intensity difference information is captured in 
a novel way by introducing fuzzy reasoning rules to 
obtain illumination invariance. Furthermore, our 
new weighting scheme also gave improved results 
than Gaussian weighting scheme and uniform 
weighting scheme. Experimental results have shown 
that our descriptor obtained superior performance 
not only under illumination changes, but also under 
many other image transformations. 
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